Biotin Info – Archived Resources

Biotin Info – Archived Articles and Resources

-::- Note: The below is posted here for archival and educational purposes -::-

– from Wikipedia –

Biotin is a water-soluble B-complex vitamin (vitamin B7) that is composed of a ureido (tetrahydroimidizalone) ring fused with a tetrahydrothiophene ring. A valeric acid substituent is attached to one of the carbon atoms of the tetrahydrothiophene ring. Biotin is a coenzyme in the metabolism of fatty acids and leucine, and it plays a role in gluconeogenesis.

General overview

Biotin is necessary for cell growth, the production of fatty acids, and the metabolism of fats and amino acids. It plays a role in the citric acid cycle, which is the process by which biochemical energy is generated during aerobic respiration. Biotin not only assists in various metabolic reactions but also helps to transfer carbon dioxide. Biotin may also be helpful in maintaining a steady blood sugar level.[2] Biotin is often recommended for strengthening hair and nails. Consequently, it is found in many cosmetics and health products for the hair and skin, though it cannot be absorbed through the hair or skin itself.

Biotin deficiency is rare, because intestinal bacteria generally produce biotin in excess of the body’s daily requirements. For that reason, statutory agencies in many countries, for example the USA[3] and Australia,[4] do not prescribe a recommended daily intake of biotin. However, a number of metabolic disorders exist in which an individual’s metabolism of biotin is abnormal; in these disorders, megadoses of biotin, far higher than the average daily intake from food, can generally mitigate symptoms and correct the underlying metabolic disturbance.


Biotin D(+) is a cofactor responsible for carbon dioxide transfer in several carboxylase enzymes:

and, so, is important in fatty acid synthesis, branched-chain amino acid catabolism, and gluconeogenesis. Biotin covalently attaches to the epsilon-amino group of specific lysine residues in these carboxylases. This biotinylation reaction requires ATP and is catalyzed by holocarboxylase synthetase.[5] The attachment of biotin to various chemical sites can be used as an important laboratory technique to study various processes including protein localization, protein interactions, DNA transcription and replication. Biotinidase itself is known to be able to biotinylate histone proteins,[6] but little biotin is found naturally attached to chromatin.

Biotin binds very tightly to the tetrameric protein avidin (also streptavidin and neutravidin), with a dissociation constant Kd in the order of 10−15, which is one of the strongest known protein-ligand interactions, approaching the covalent bond in strength.[7] This is often used in different biotechnological applications. Until 2005, very harsh conditions were required to break the biotin-streptavidin bond.[8]

Sources of biotin

Biotin is consumed from a wide range of food sources in the diet, however there are few particularly rich sources. Foods with a relatively high biotin content include raw egg yolk (ironically, the consumption of egg whites with egg yolks minimizes the effectiveness of egg yolk’s biotin in one’s body), liver, and some vegetables[citation needed][vague]. The dietary biotin intake in Western populations has been estimated to be 35 to 70 μg/d (143–287 nmol/d).[9]

Biotin is also available from supplements. The synthetic process developed by Leo Sternbach and Moses Wolf Goldberg in the 1940s uses fumaric acid as a starting material and is identical to the natural product.[10]


Biotin is also called vitamin H (the H represents “Haar und Haut”, German words for “hair and skin”) or vitamin B7. Studies on the bioavailability of biotin have been conducted in rats and in chicks. From these studies, it was concluded that biotin bioavailability may be low or variable, depending on the type of food being consumed. In general, biotin exists in food as protein bound form or biocytin.[11] Proteolysis by protease is required prior to absorption. This process assists free biotin release from biocytin and protein bound biotin. The biotin present in corn is readily available; however, most grain have about a 20-40% bioavailability of biotin.[12]

A possible explanation for the wide variability in biotin bioavailability is that it is due to ability of an organism to break various biotin-protein bonds from food. Whether an organism has an enzyme with the ability to break that bond will determine the bioavailability of biotin from the foodstuff.[12]

Factors that affect biotin requirements

The frequency of marginal biotin status is not known, but the incidence of low circulating biotin levels in alcoholics has been found to be much greater than in the general population. Also, relatively low levels of biotin have been reported in the urine or plasma of patients that have had partial gastrectomy or that have other causes of achlorhydria, burn patients, epileptics, elderly individuals, and athletes.[12] Pregnancy and lactation may be associated with an increased demand for biotin. In pregnancy, this may be due to a possible acceleration of biotin catabolism, whereas, in lactation, the higher demand has yet to be elucidated. Recent studies have shown that marginal biotin deficiency can be present in human gestation, as evidenced by increased urinary excretion of 3-hydroxyisovaleric acid, decreased urinary excretion of biotin and bisnorbiotin, and decreased plasma concentration of biotin. Additionally, smoking may further accelerate biotin catabolism in women.[13]


Biotin deficiency is relatively rare and mild, and can be addressed with supplementation. Such deficiency can be caused by the excessive consumption of raw egg whites (20 eggs/day would be required to induce it), which contain high levels of the protein avidin, which binds biotin strongly. Avidin denaturates upon heating (cooking), while the biotin remains intact.

Symptoms of overt biotin deficiency include:

  • Hair loss (alopecia)
  • Conjunctivitis
  • Dermatitis in the form of a scaly red rash around the eyes, nose, mouth, and genital area.
  • Neurological symptoms in adults such as depression, lethargy, hallucination, and numbness and tingling of the extremities.[3]

The characteristic facial rash, together with an unusual facial fat distribution, has been termed the “biotin-deficient face” by some experts. Individuals with hereditary disorders of biotin deficiency have evidence of impaired immune system function, including increased susceptibility to bacterial and fungal infections.[14]

Pregnant women tend to have high risk of biotin deficiency. Research has shown that nearly half of pregnant women have an abnormal increase of 3-hydroxyisovaleric acid, which reflects reduced status of biotin.[14] Numbers of studies reported that this possible biotin deficiency during the pregnancy may cause infants’ congenital malformations such as cleft palate. Mice fed with dried raw egg to induce biotin deficiency during the gestation resulted in up to 100% incidence of the infants’ malnourishment. Infants and embryos are more sensitive to the biotin deficiency. Therefore, even a mild level of mother’s biotin deficiency that does not reach the appearance of physiological deficiency signs may cause a serious consequence in the infants.

Metabolic disorders

Inherited metabolic disorders characterized by deficient activities of biotin-dependent carboxylases are termed multiple carboxylase deficiency. These include deficiencies in the enzymes holocarboxylase synthetase or biotinidase. Holocarboxylase synthetase deficiency prevents the body’s cells from using biotin effectively, and thus interferes with multiple carboxylase reactions.[15] Biochemical and clinical manifestation includes: ketolactic acidosis, organic aciduria, hyperammonemia, skin rash, feeding problems, hypotonia, seizures, developmental delay, alopecia, and coma.

Biotinidase deficiency is not due to inadequate biotin, but rather to a deficiency in the enzymes that process it. Biotinidase catalyzes the cleavage of biotin from biocytin and biotinyl-peptides (the proteolytic degradation products of each holocarboxylase) and thereby recycles biotin. It is also important in freeing biotin from dietary protein-bound biotin.[15] General symptoms include decreased appetite and growth. Dermatologic symptoms include dermatitis, alopecia (hair loss) and achromotrichia (absence or loss of pigment in the hair).[16] Perosis (a shortening and thickening of bones) is seen in the skeleton. Fatty liver and kidney syndrome (FLKS) and hepatic steatosis also can occur.[12]


Hair problems

The signs and symptoms of biotin deficiency include hair loss that progresses in severity to include loss of eyelashes and eyebrows in severely deficient subjects. Some shampoos are available that contain biotin, but it is doubtful whether they would have any useful effect, as biotin is not absorbed well through the skin.

Cradle cap (seborrheic dermatitis)

Children with a rare inherited metabolic disorder called phenylketonuria (PKU; in which one is unable to break down the amino acid phenylalanine) often develop skin conditions such as eczema and seborrheic dermatitis in areas of the body other than the scalp. The scaly skin changes that occur in people with PKU may be related to poor ability to use biotin. Increasing dietary biotin has been known to improve seborrheic dermatitis[17] in these cases.


Diabetics may also benefit from biotin supplementation. In both insulin-dependent and non-insulin-dependent diabetics, supplementation with biotin can improve blood sugar control and help lower fasting blood glucose levels, in some studies the reduction in fasting glucose exceeded 50 percent. Biotin can also play a role in preventing the neuropathy often associated with diabetes, reducing both the numbness and tingling associated with poor glucose control.[18][19]


Animal studies have indicated few, if any, effects due to toxic doses of biotin. This may provide evidence that both animals and humans could tolerate doses of at least an order of magnitude greater than each of their nutritional requirements. There are no reported cases of adverse effects from receiving high doses of the vitamin, particularly when used in the treatment of metabolic disorders causing sebhorrheic dermatitis in infants.[20]

Laboratory uses

This section does not cite any references or sources.
Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (August 2010)

In the laboratory, biotin is often chemically linked to proteins for biochemical assays. Its small size means the biological activity of the protein will most likely be unaffected. This process is called biotinylation. Because both streptavidin and avidin bind biotin with high affinity (Kd of ~10−14 mol/L) and specificity, biotinylated proteins of interest can be isolated from a sample by exploiting this highly-stable interaction. The sample is incubated with streptavidin / avidin beads, allowing capture of the biotinylated protein of interest. Any other proteins binding to the biotinylated molecule will also stay with the bead and all other unbound proteins can be washed away. However, due to the extremely strong streptavidin-biotin interaction, very harsh conditions are needed to elute the biotinylated protein from the beads (typically 6M GuHCl at pH 1.5), which often will denature the protein of interest. To circumvent this problem, beads conjugated to monomeric avidin can be used, which has a decreased biotin-binding affinity of ~10−8 mol/L, allowing the biotinylated protein of interest to be eluted with excess free biotin.

ELISAs often make use of biotinylated primary antibodies against the antigen of interest, followed by a detection step using streptavidin conjugated to a reporter molecule, such as Horseradish peroxidase.

See also


  1. ^ Merck Index, 11th Edition, 1244.
  2. ^
  3. ^ a b Otten, JJ, Hellwig, JP and Meyers, LD., ed (2006). Dietary Reference Intakes: The Essential Guide to Nutrient Requirements. The National Academies Press. ISBN 0-309-10091-7.
  4. ^ National Health and Medical Research Council: Nutrient Reference Values for Australia and New Zealand
  5. ^ Zempleni J, Wijeratne SS, Hassan YI. (2009). “Biotin”. Biofactors 35 (1): 36–46. doi:10.1002/biof.8. PMID 19319844.
  6. ^ Hymes, J; Fleischhauer, K; Wolf, B. (1995). “Biotinylation of histones by human serum biotinidase: assessment of biotinyl-transferase activity in sera from normal individuals and children with biotinidase deficiency.”. Biochem Mol Med. 56 (1): 76–83. doi:10.1006/bmme.1995.1059. PMID 8593541.
  7. ^ Laitinen OH, Hytonen VP, Nordlund HR, Kulomaa MS. (2006). “Genetically engineered avidins and streptavidins.”. Cell Mol Life Sci. 63 (24): 2992–3017. doi:10.1007/s00018-006-6288-z. PMID 17086379.
  8. ^ Holmberg A, Blomstergren A, Nord O et al. (2005). “The biotin-streptavidin interaction can be reversibly broken using water at elevated temperatures”. Electrophoresis 26 (3): 501–10. doi:10.1002/elps.200410070. PMID 15690449.
  9. ^ Zempleni J, Mock DM. (1999). “Biotin biochemistry and human requirements.”. J Nutr Biochem. 10 (3): 128–138. doi:10.1016/S0955-2863(98)00095-3. PMID 15539280.
  10. ^ “Biotin”. DSM Nutritional Products. 2009-08-31. Retrieved 2010-02-19. [dead link]
  11. ^ Gropper S.S., Smith, J.L.,Groff, J.L. (2005). Advanced nutrition and human metabolism. Belmont. ISBN 0534559867.
  12. ^ a b c d Combs, Gerald F. Jr. (2008). The Vitamins: Fundamental Aspects in Nutrition and Health. San Diego: Elsevier, Inc. ISBN 9780121834937.
  13. ^ Bowman, BA and Russell, RM., ed (2006). “Biotin”. Present Knowledge in Nutrition, Ninth Edition, Vol 1. Washington, DC: Internation Life Sciences Institute. ISBN 9781578811984.
  14. ^ a b Higdon, Jane (2003). “Biotin”. An evidence-based approach to vitamins and minerals. Thieme. ISBN 9781588901248.
  15. ^ a b Wolf B, Grier RE, Secor McVoy JR, Heard GS. (1985). “Biotinidase deficiency: a novel vitamin recycling defect”. J Inherit Metab Dis. 8 (1): 53–8. doi:10.1007/BF01800660. PMID 3930841.
  16. ^
  17. ^ Murray, Michael; Pizzorno, Joseph (1997). “Encyclopedia of Natural Medicine” (Revised 2nd Edition) Three Rivers Press. ISBN 0761511571
  18. ^
  19. ^ Oregon State University, Linus Pauling Institute, Micronutrient Research
  20. ^ Combs, Gerald F. Jr. (1998). The Vitamins: Fundamental Aspects in Nutrition and Health. Ithaca: Elsevier Academic Press. ISBN 0121834921. pg. 360

External links

———- Retrieved 12/13/2010 — Source: ——

-::- Note: The below is posted here for archival and educational purposes -::-

——-::- From the Mayo Clinic -::————

Quoted article:

Biotin (Oral Route)
Drug Information provided by: Micromedex
US Brand Names

* Appearex

* Meribin

* Nail-ex


Biotin supplements are used to prevent or treat biotin deficiency.

Vitamins are compounds that you must have for growth and health. They are needed in only small amounts and are usually available in the foods that you eat. Biotin is necessary for formation of fatty acids and glucose, which are used as fuels by the body. It is also important for the metabolism of amino acids and carbohydrates.

A lack of biotin is rare. However, if it occurs it may lead to skin rash, loss of hair, high blood levels of cholesterol, and heart problems.

Some conditions may increase your need for biotin. These include:

* Genetic disorder of biotin deficiency
* Seborrheic dermatitis in infants
* Surgical removal of the stomach

Increased need for biotin should be determined by your health care professional.

Claims that biotin supplements are effective in the treatment of acne, eczema (a type of skin disorder), or hair loss have not been proven.

Biotin supplements are available without a prescription.

For good health, it is important that you eat a balanced and varied diet. Follow carefully any diet program your health care professional may recommend. For your specific vitamin and/or mineral needs, ask your health care professional for a list of appropriate foods. If you think that you are not getting enough vitamins and/or minerals in your diet, you may choose to take a dietary supplement.

Biotin is found in various foods, including liver, cauliflower, salmon, carrots, bananas, soy flour, cereals, and yeast. Biotin content of food is reduced by cooking and preserving.

Vitamins alone will not take the place of a good diet and will not provide energy. Your body needs other substances found in food, such as protein, minerals, carbohydrates, and fat. Vitamins themselves cannot work without the presence of other foods.

The daily amount of biotin needed is defined in several different ways.

* For U.S.—Recommended Dietary Allowances (RDAs) are the amount of vitamins and minerals needed to provide for adequate nutrition in most healthy persons. RDAs for a given nutrient may vary depending on a person’s age, sex, and physical condition (e.g., pregnancy).
* Daily Values (DVs) are used on food and dietary supplement labels to indicate the percent of the recommended daily amount of each nutrient that a serving provides. DVs replace the previous designation of United States Recommended Daily Allowances (USRDAs).

* For Canada—Recommended Nutrient Intakes (RNIs) are used to determine the amounts of vitamins, minerals, and protein needed to provide adequate nutrition and lessen the risk of chronic disease.

Because lack of biotin is rare, there is no RDA or RNI for it. Normal daily recommended intakes for biotin are generally defined as follows:

* Infants and children—
o Birth to 3 years of age: 10 to 20 micrograms (mcg).
o 4 to 6 years of age: 25 mcg.
o 7 to 10 years of age: 30 mcg.
* Adolescents and adults—
o 30 to 100 mcg.

This product is available in the following dosage forms:

* Tablet
* Capsule

Before Using

If you are taking this dietary supplement without a prescription, carefully read and follow any precautions on the label. For this supplement, the following should be considered:


Tell your doctor if you have ever had any unusual or allergic reaction to this medicine or any other medicines. Also tell your health care professional if you have any other types of allergies, such as to foods, dyes, preservatives, or animals. For non-prescription products, read the label or package ingredients carefully.


Problems in children have not been reported with intake of normal daily recommended amounts.


Problems in older adults have not been reported with intake of normal daily recommended amounts.

Drug Interactions

Although certain medicines should not be used together at all, in other cases two different medicines may be used together even if an interaction might occur. In these cases, your doctor may want to change the dose, or other precautions may be necessary. Tell your healthcare professional if you are taking any other prescription or nonprescription (over-the-counter [OTC]) medicine.

Other Interactions

Certain medicines should not be used at or around the time of eating food or eating certain types of food since interactions may occur. Using alcohol or tobacco with certain medicines may also cause interactions to occur. Discuss with your healthcare professional the use of your medicine with food, alcohol, or tobacco.

Proper Use


The dose of this medicine will be different for different patients. Follow your doctor’s orders or the directions on the label. The following information includes only the average doses of this medicine. If your dose is different, do not change it unless your doctor tells you to do so.

The amount of medicine that you take depends on the strength of the medicine. Also, the number of doses you take each day, the time allowed between doses, and the length of time you take the medicine depend on the medical problem for which you are using the medicine.

* For oral dosage form (capsules or tablets):
o To prevent deficiency, the amount taken by mouth is based on normal daily recommended intakes:
+ Adults and teenagers—30 to 100 micrograms (mcg) per day.
+ Children 7 to 10 years of age—30 mcg per day.
+ Children 4 to 6 years of age—25 mcg per day.
+ Children birth to 3 years of age—10 to 20 mcg per day.
o To treat deficiency:
+ Adults, teenagers, and children—Treatment dose is determined by prescriber for each individual based on severity of deficiency.

Missed Dose

If you miss a dose of this medicine, take it as soon as possible. However, if it is almost time for your next dose, skip the missed dose and go back to your regular dosing schedule. Do not double doses.

If you miss taking biotin supplements for one or more days there is no cause for concern, since it takes some time for your body to become seriously low in biotin. However, if your health care professional has recommended that you take biotin, try to remember to take it as directed every day.


Store the medicine in a closed container at room temperature, away from heat, moisture, and direct light. Do not refrigerate. Keep from freezing.

Store the dietary supplement in a closed container at room temperature, away from heat, moisture, and direct light. Keep from freezing.

Keep out of the reach of children.

Do not keep outdated medicine or medicine no longer needed.

Side Effects

No side effects have been reported for biotin in amounts up to 10 milligrams a day. However, check with your health care professional if you notice any unusual effects while you are taking it.

Retrieved 12/08/2010 — Article S ource:


:: The above has been posted here for archival and educational purposes only. PLEASE do me a favor and visit the author’s website, i.e. the ORIGINAL website where this diet was found, by following this link, and considering using their services and/or visiting their sponsors’ websites: ::


——-::- From the The Linus Pauling Institute Micronutrient Information Center -::——–

Quoted Article


Biotin is a water-soluble vitamin that is generally classified as a B-complex vitamin. After the initial discovery of biotin, nearly 40 years of research were required to establish it as a vitamin (1). Biotin is required by all organisms but can be synthesized only by bacteria, yeasts, molds, algae, and some plant species (2).


Biotin is attached at the active site of five mammalian enzymes known as carboxylases (3). The attachment of biotin to another molecule, such as a protein, is known as “biotinylation.”  Holocarboxylase synthetase (HCS) catalyzes the biotinylation of apocarboxylases (i.e., the catalytically inactive form of the enzyme) and of histones (See below). Biotinidase catalyzes the release of biotin from histones and from the peptide products of carboxylase breakdown.

Enzyme cofactor

Each carboxylase catalyzes an essential metabolic reaction:

  • Acetyl-CoA carboxylase I and II catalyze the binding of bicarbonate to acetyl-CoA to form malonyl-CoA. Malonyl-CoA is required for the synthesis of fatty acids. The former is crucial in cytosolic fatty acid synthesis, and the latter functions in regulating mitochondrial fatty acid oxidation.
  • Pyruvate carboxylase is a critical enzyme in gluconeogenesis—the formation of glucose from sources other than carbohydrates, for example, amino acids.
  • Methylcrotonyl-CoA carboxylase catalyzes an essential step in the catabolism of leucine, an essential amino acid.
  • Propionyl-CoA carboxylase catalyzes essential steps in the metabolism of certain amino acids, cholesterol, and odd chain fatty acids (fatty acids with an odd number of carbon molecules) (4).

Histone biotinylation

Histones are proteins that bind to DNA and package it into compact structures to form nucleosomes—integral structural components of chromosomes. The compact packaging of DNA must be relaxed somewhat for DNA replication and transcription to occur. Modification of histones through the attachment of acetyl or methyl groups (acetylation or methylation) has been shown to affect the structure of histones, thereby affecting replication and transcription of DNA. Mounting evidence indicates that biotinylation of histones plays a role in regulating DNA replication and transcription as well as cellular proliferation and other cellular responses (5-7).


Although overt biotin deficiency is very rare, the human requirement for dietary biotin has been demonstrated in two different situations: prolonged intravenous feeding (parenteral) without biotin supplementation and consumption of raw egg white for a prolonged period (many weeks to years). Avidin is an antimicrobial protein found in egg white that binds biotin and prevents its absorption. Cooking egg white denatures avidin, rendering it susceptible to digestion and therefore unable to prevent the absorption of dietary biotin (8).

Three measures of biotin status have been validated as indicators of biotin status: (1) high excretion of an organic acid (3-hydroxyisovaleric acid) that reflects decreased activity of the biotin-dependent enzyme, methylcrotonyl-CoA carboxylase; (2) reduced urinary excretion of biotin; and (3) propionyl-CoA carboxylase activity in peripheral blood lymphocytes (4, 9-11).

Signs and symptoms

Signs of overt biotin deficiency include hair loss and a scaly red rash around the eyes, nose, mouth, and genital area. Neurologic symptoms in adults have included depression, lethargy, hallucination, and numbness and tingling of the extremities. The characteristic facial rash, together with unusual facial fat distribution, has been termed the “biotin deficient facies” by some investigators (8). Individuals with hereditary disorders of biotin metabolism resulting in functional biotin deficiency often have similar physical findings as well as evidence of impaired immune system function and increased susceptibility to bacterial and fungal infections (12).

Predisposing conditions

There are several ways in which the hereditary disorder, biotinidase deficiency, leads to biotin deficiency. Intestinal absorption is decreased because a lack of biotinidase inhibits the release of biotin from dietary protein. Recycling of one’s own biotin bound to protein is impaired, and urinary loss of biotin is increased because the kidneys more rapidly excrete biotin that is not bound to biotinidase (5, 8) . Biotinidase deficiency uniformly responds to moderate biotin supplementation. Oral supplementation with as much as 5 to 10 milligrams (mg) of biotin daily is sometimes required, although smaller doses are often sufficient. Some forms of holocarboxylase synthetase (HCS) deficiency respond to biotin supplementation with large doses. HCS deficiency results in an enzyme that catalyzes the attachment of biotin to all four carboxylase enzymes (see Function). HCS deficiency results in decreased formation of all holocarboxylases at normal blood levels of biotin; thus, high-dose supplementation (40 mg to 100 mg of biotin/day) is required. The inborn error, biotin transporter deficiency, also responds to high-dose biotin supplementation (13). The prognosis of all three of these disorders is often, but not always, good if biotin therapy is introduced early (infancy or childhood) and continued for life (12).

Aside from prolonged consumption of raw egg white or total intravenous nutritional support lacking biotin, other conditions may increase the risk of biotin depletion. The rapidly dividing cells of the developing fetus require biotin for histone biotinylation and synthesis of essential carboxylases; hence, the biotin requirement is likely increased during pregnancy. Research suggests that a substantial number of women develop marginal or subclinical biotin deficiency during normal pregnancy (6, 14). However, the recommended adequate intake does not change for pregnancy (See below). Additionally, some types of liver disease may decrease biotinidase activity and theoretically increase the requirement for biotin. A study of 62 children with chronic liver disease and 27 healthy controls found serum biotinidase activity to be abnormally low in those with severely impaired liver function due to cirrhosis (15). However, this study did not provide evidence of biotin deficiency. Further, anticonvulsant medications, used to prevent seizures in individuals with epilepsy, increase the risk of biotin depletion (16, 17). See Safety for more information on biotin and anticonvulsants.

The Adequate Intake (AI)

In 1998, the Food and Nutrition Board of the Institute of Medicine felt the existing scientific evidence was insufficient to calculate a RDA for biotin, so they set an Adequate Intake level (AI). The AI for biotin assumes that current average intakes of biotin (35 mcg to 60 mcg/day) meet the dietary requirement (1).

Adequate Intake (AI) for Biotin
Life Stage Age Males (mcg/day) Females (mcg/day)
Infants 0-6 months 5 5
Infants 7-12 months 6 6
Children 1-3 years 8 8
Children 4-8 years 12 12
Children 9-13 years 20 20
Adolescents 14-18 years 25 25
Adults 19 years and older 30 30
Pregnancy all ages - 30
Breast-feeding all ages - 35

Disease Prevention

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
An automatic insert of some related ads:

Thanks for your patronage. Article continues below:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Birth defects

Research indicates that biotin is broken down more rapidly during pregnancy and that biotin nutritional status declines during the course of pregnancy (6). One study reported that biotin excretion dropped below the normal range during late pregnancy in six out of 13 women, suggesting that their biotin status was abnormally low. Over half of pregnant women have abnormally high excretion of a metabolite (3-hydroxyisovaleric acid) thought to reflect decreased activity of a biotin-dependent enzyme. A study of 26 pregnant women found that biotin supplementation decreased the excretion of this metabolite compared to placebo, suggesting that marginal biotin deficiency may be relatively common in pregnancy (14). In one study, the incidence of decreased lymphocyte propionyl-CoA carboxylase activity (a marker of biotin deficiency) in pregnancy was greater than 75% (18). Although the level of biotin depletion is not severe enough to cause diagnostic signs or symptoms, such observations are sources of concern because subclinical biotin deficiency has been shown to cause birth defects in several animal species (16). Currently, it is estimated that at least one third of women develop marginal biotin deficiency during pregnancy (8). Indirect evidence also suggests that marginal biotin deficiency causes birth defects in humans. On balance, the potential risk for teratogenesis (abnormal development of the embryo or fetus) from biotin deficiency makes it prudent to ensure adequate biotin intake throughout pregnancy. Since pregnant women are advised to consume supplemental folic acid prior to and during pregnancy (see Folic Acid) to prevent neural tube defects, it would be easy to consume supplemental biotin (at least 30 mcg/day) in the form of a multivitamin that also contains at least 400 mcg of folic acid. Toxicity at this level of biotin intake has never been reported (See Safety).

Disease Treatment

Diabetes mellitus

It has been known for many years that overt biotin deficiency impairs glucose utilization in rats (19). In one human study, blood biotin levels were significantly lower in 43 patients with non-insulin dependent diabetes mellitus (NIDDM; type 2 diabetes) than in non-diabetic control subjects, and lower fasting blood glucose levels were associated with higher blood biotin levels. After one month of biotin supplementation (9,000 mcg/day), fasting blood glucose levels decreased by an average of 45% (20). In contrast, a study in ten type 2 diabetics and seven nondiabetic controls reported that biotin supplementation (15,000 mcg/day) for 28 days did not decrease fasting blood glucose levels in either group (21). A more recent double-blind, placebo-controlled study by the same group of investigators found that the same biotin treatment protocol lowered plasma triglyceride levels in both diabetic and nondiabetic patients with hypertriglyceridemia (22). In this study, biotin administration did not affect blood glucose concentrations in either diabetic or nondiabetic subjects. Additionally, a few studies have shown that co-supplementation with biotin and chromium picolinate may be a beneficial adjunct therapy in patients with type 2 diabetes (23-26). However, several studies have reported that administration of chromium picolinate alone improves glycemic control in diabetic subjects (27). See the separate article on chromium.

Reductions in blood glucose levels were found in seven insulin-dependent (type 1) diabetics after one week of supplementation with 16,000 mcg of biotin daily (28). Several mechanisms could explain a possible blood glucose-lowering effect of biotin. As a cofactor of enzymes required for fatty acid synthesis, biotin may increase the utilization of glucose for fat synthesis. Biotin has been found to stimulate glucokinase, a liver enzyme that increases synthesis of glycogen, the storage form of glucose. Biotin has also been found to stimulate the secretion of insulin in the pancreas of rats, which also has the effect of lowering blood glucose (29). An effect on cellular glucose transporters (GLUT) is currently under investigation. Presently, studies of the effect of supplemental biotin on blood glucose levels in humans are extremely limited, but they highlight the need for further research.

Brittle fingernails

The finding that biotin supplements were effective in treating hoof abnormalities in horses and swine led to speculation that biotin supplements might also be helpful in strengthening brittle fingernails in humans. Three uncontrolled trials examining the effects of biotin supplementation (2.5 mg/day for up to six months) in women with brittle fingernails have been published (29-31). In two of the trials, subjective evidence of clinical improvement was reported in 67-91% of the participants available for follow-up at the end of the treatment period (29, 30). One trial that used scanning electron microscopy to assess fingernail thickness and splitting found that fingernail thickness increased by 25% and splitting decreased after biotin supplementation (31). Although the results of these small uncontrolled trials suggest that biotin supplements may be helpful in strengthening brittle nails, larger placebo-controlled trials are needed to assess the efficacy of high-dose biotin supplementation for the treatment of brittle fingernails.

Hair loss

Although hair loss is a symptom of severe biotin deficiency (see Deficiency), there are no published scientific studies that support the claim that high-dose biotin supplements are effective in preventing or treating hair loss in men or women.


Food sources

Biotin is found in many foods, but generally in lower amounts than other water-soluble vitamins. Egg yolk, liver, and yeast are rich sources of biotin. Large national nutritional surveys in the U.S. were unable to estimate biotin intake due to the scarcity of data regarding biotin content of food. Smaller studies estimate average daily intakes of biotin to be from 40 to 60 mcg/day in adults (1). The table below lists some rich sources of biotin along with their content in micrograms (mcg) (32). However, a recent publication that employed chemical rather than microbial assays reported quite different content for some common foods (33).

Food Serving Biotin (mcg) (32, 33)
Yeast 1 packet (7 grams) 1.4-14
Bread, whole-wheat 1 slice 0.02-6
Egg, cooked 1 large 13-25
Cheese, cheddar 1 ounce 0.4-2
Liver, cooked 3 ounces* 27-35
Pork, cooked 3 ounces* 2-4
Salmon, cooked 3 ounces* 4-5
Avocado 1 whole 2-6
Raspberries 1 cup 0.2-2
Cauliflower, raw 1 cup 0.2-4

*A 3-ounce serving of meat is about the size of a deck of cards.

Bacterial synthesis

Most bacteria that normally colonize the small and large intestine (colon) synthesize biotin. Whether the biotin is released and absorbed by humans in meaningful amounts remains unknown. However, a specialized process for the uptake of biotin has been identified in cultured cells derived from the lining of the small bowel and colon (34), suggesting that humans may be able to absorb biotin produced by enteric bacteria—a phenomenon documented in swine.



Biotin is not known to be toxic. Oral biotin supplementation has been well-tolerated in doses up to 200,000 mcg/day in people with hereditary disorders of biotin metabolism (1). In people without disorders of biotin metabolism, doses of up to 5,000 mcg/day for two years were not associated with adverse effects (35). However, there is one case report of life-threatening eosinophilic pleuropericardial effusion in an elderly woman who took a combination of 10,000 mcg/day of biotin and 300 mg/day of pantothenic acid for two months (36). Due to the lack of reports of adverse effects when the Dietary Reference Intakes (DRI) were established for biotin in 1998, the Institute of Medicine did not establish a tolerable upper level of intake (UL) for biotin (1). Note: 1 mg = 1,000 mcg.

Nutrient interactions

Large doses of pantothenic acid (vitamin B5) have the potential to compete with biotin for intestinal and cellular uptake due to their similar structures (37). In addition, very high (pharmacologic) doses of lipoic acid have been found to decrease the activity of biotin-dependent carboxylases in rats, but such an effect has not been demonstrated in humans (4, 38).

Drug interactions

Individuals on long-term anticonvulsant (anti-seizure) therapy reportedly have reduced blood levels of biotin as well as increased urinary excretion of organic acids that indicated decreased carboxylase activity (39). The anticonvulsants primidone and carbamazepine inhibit biotin absorption in the small intestine. Chronic therapy with phenobarbital, phenytoin, or carbamazepine appears to increase urinary excretion of 3-hydroxyisovaleric acid. Use of the anticonvulsant valproic acid has been associated with decreased biotinidase activity in children (17). Long-term treatment with sulfa drugs or other antibiotics may decrease bacterial synthesis of biotin, theoretically increasing the requirement for dietary biotin.

Linus Pauling Institute Recommendation

Little is known regarding the amount of dietary biotin required to promote optimal health or prevent chronic disease. The Linus Pauling Institute supports the recommendation by the Food and Nutrition Board of 30 micrograms (mcg) of biotin/day for adults. A varied diet should provide enough biotin for most people. However, following the Linus Pauling Institute recommendation to take a daily multivitamin-mineral supplement will generally provide an intake of at least 30 mcg of biotin/day.

Older adults (65 years and older)

Presently, there is no indication that older adults have an increased requirement for biotin. If dietary biotin intake is not sufficient, a daily multivitamin-mineral supplement will generally provide an intake of at least 30 mcg of biotin/day.

References: Biotin

1.  Food and Nutrition Board, Institute of Medicine. Biotin. Dietary Reference Intakes: Thiamin, Riboflavin, Niacin, Vitamin B6, Vitamin B12, Pantothenic Acid, Biotin, and Choline. Washington, D.C.: National Academy Press; 1998:374-389.  (National Academy Press)

2.  Mock DM. Biotin. In: Shils ME, Olson JA, Shike M, Ross AC, eds. Modern Nutrition in Health and Disease. 9th ed. Baltimore: Lippincott Williams & Wilkins; 1999:459-466.

3.  Chapman-Smith A, Cronan JE, Jr. Molecular biology of biotin attachment to proteins. J Nutr. 1999;129(2S Suppl):477S-484S.  (PubMed)

4.  Zempleni J, Mock DM. Biotin biochemistry and human requirements. 1999; volume 10: pages 128-138. J Nutr. Biochem. 1999;10:128-138.

5.  Hymes J, Wolf B. Human biotinidase isn’t just for recycling biotin. J Nutr. 1999;129(2S Suppl):485S-489S.  (PubMed)

6.  Zempleni J, Mock DM. Marginal biotin deficiency is teratogenic. Proc Soc Exp Biol Med. 2000;223(1):14-21.  (PubMed)

7.  Kothapalli N, Camporeale G, Kueh A, et al. Biological functions of biotinylated histones. J Nutr Biochem. 2005;16(7):446-448.  (PubMed)

8.  Mock DM. Biotin. In: Shils ME, Shike M, Ross AC, Caballero B, Cousins RJ, eds. Modern Nutrition in Health and Disease. 10th ed. Baltimore: Lippincott Williams & Wilkins; 2006:482-497.

9.  Mock DM. Marginal biotin deficiency is teratogenic in mice and perhaps humans: a review of biotin deficiency during human pregnancy and effects of biotin deficiency on gene expression and enzyme activities in mouse dam and fetus. J Nutr Biochem. 2005;16(7):435-437.  (PubMed)

10.  Stratton SL, Bogusiewicz A, Mock MM, Mock NI, Wells AM, Mock DM. Lymphocyte propionyl-CoA carboxylase and its activation by biotin are sensitive indicators of marginal biotin deficiency in humans. Am J Clin Nutr. 2006;84(2):384-388.  (PubMed)

11.  Mock D, Henrich C, Carnell N, Mock N, Swift L. Lymphocyte propionyl-CoA carboxylase and accumulation of odd-chain fatty acid in plasma and erythrocytes are useful indicators of marginal biotin deficiency small star, filled. J Nutr Biochem. 2002;13(8):462.  (PubMed)

12.  Baumgartner ER, Suormala T. Inherited defects of biotin metabolism. Biofactors. 1999;10(2-3):287-290.

13.  Mardach R, Zempleni J, Wolf B, et al. Biotin dependency due to a defect in biotin transport. J Clin Invest. 2002;109(12):1617-1623.  (PubMed)

14.  Mock DM, Quirk JG, Mock NI. Marginal biotin deficiency during normal pregnancy. Am J Clin Nutr. 2002;75(2):295-299.  (PubMed)

15.  Pabuccuoglu A, Aydogdu S, Bas M. Serum biotinidase activity in children with chronic liver disease and its clinical significance. J Pediatr Gastroenterol Nutr. 2002;34(1):59-62.  (PubMed)

16.  Mock DM. Biotin status: which are valid indicators and how do we know? J Nutr. 1999;129(2S Suppl):498S-503S.  (PubMed)

17.  Schulpis KH, Karikas GA, Tjamouranis J, Regoutas S, Tsakiris S. Low serum biotinidase activity in children with valproic acid monotherapy. Epilepsia. 2001;42(10):1359-1362.  (PubMed)

18.  Mock DM. Marginal biotin deficiency is common in normal human pregnancy and is highly teratogenic in mice. J Nutr. 2009; 139(1):154-157.  (PubMed)

19.  Zhang H, Osada K, Sone H, Furukawa Y. Biotin administration improves the impaired glucose tolerance of streptozotocin-induced diabetic Wistar rats. J Nutr Sci Vitaminol (Tokyo). 1997;43(3):271-280.  (PubMed)

20.  Maebashi M, Makino Y, Furukawa Y, Ohinata K, Kimura S, Sato T. Therapeutic evaluation of the effect of biotin on hyperglycemia in patients with non-insulin dependent diabetes mellitus. J Clin Biochem Nutr. 1993;14:211-218.

21.  Baez-Saldana A, Zendejas-Ruiz I, Revilla-Monsalve C, et al. Effects of biotin on pyruvate carboxylase, acetyl-CoA carboxylase, propionyl-CoA carboxylase, and markers for glucose and lipid homeostasis in type 2 diabetic patients and nondiabetic subjects. Am J Clin Nutr. 2004;79(2):238-243.  (PubMed)

22.  Revilla-Monsalve C, Zendejas-Ruiz I, Islas-Andrade S, et al. Biotin supplementation reduces plasma triacylglycerol and VLDL in type 2 diabetic patients and in nondiabetic subjects with hypertriglyceridemia. Biomed Pharmacother. 2006;60(4):182-185.  (PubMed)

23.  Geohas J, Daly A, Juturu V, Finch M, Komorowski JR. Chromium picolinate and biotin combination reduces atherogenic index of plasma in patients with type 2 diabetes mellitus: a placebo-controlled, double-blinded, randomized clinical trial. Am J Med Sci. 2007;333(3):145-153.  (PubMed)

24.  Albarracin C, Fuqua B, Geohas J, Juturu V, Finch MR, Komorowski JR. Combination of chromium and biotin improves coronary risk factors in hypercholesterolemic type 2 diabetes mellitus: a placebo-controlled, double-blind randomized clinical trial. J Cardiometab Syndr. 2007;2(2):91-97.  (PubMed)

25.  Singer GM, Geohas J. The effect of chromium picolinate and biotin supplementation on glycemic control in poorly controlled patients with type 2 diabetes mellitus: a placebo-controlled, double-blinded, randomized trial. Diabetes Technol Ther. 2006;8(6):636-643.  (PubMed)

26.  Albarracin CA, Fuqua BC, Evans JL, Goldfine ID. Chromium picolinate and biotin combination improves glucose metabolism in treated, uncontrolled overweight to obese patients with type 2 diabetes. Diabetes Metab Res Rev. 2008;24(1):41-51.  (PubMed)

27.  Broadhurst CL, Domenico P. Clinical studies on chromium picolinate supplementation in diabetes mellitus–a review. Diabetes Technol Ther. 2006;8(6):677-687.  (PubMed)

28.  Coggeshall JC, Heggers JP, Robson MC, Baker H. Biotin status and plasma glucose levels in diabetics. Ann NY Acad Sci. 1985;447:389-392.

29.  Romero-Navarro G, Cabrera-Valladares G, German MS, et al. Biotin regulation of pancreatic glucokinase and insulin in primary cultured rat islets and in biotin-deficient rats. Endocrinology. 1999;140(10):4595-4600.  (PubMed)

30.  Floersheim GL. [Treatment of brittle fingernails with biotin]. Z Hautkr. 1989;64(1):41-48.  (PubMed)

31.  Hochman LG, Scher RK, Meyerson MS. Brittle nails: response to daily biotin supplementation. Cutis. 1993;51(4):303-305.  (PubMed)

32.  Briggs DR, Wahlqvist ML. Food facts: the complete no-fads-plain-facts guide to healthy eating. Victoria, Australia: Penguin Books; 1988.

33.  Staggs CG, Sealey WM, McCabe BJ, Teague AM, Mock DM. Determination of the biotin content of select foods using accurate and sensitive HPLC/avidin binding. J Food Compost Anal. 2004;17(6):767-776.  (PubMed)

34.  Said HM, Ortiz A, McCloud E, Dyer D, Moyer MP, Rubin S. Biotin uptake by human colonic epithelial NCM460 cells: a carrier-mediated process shared with pantothenic acid. Am J Physiol. 1998;275(5 Pt 1):C1365-1371.  (PubMed)

35.  Koutsikos D, Agroyannis B, Tzanatos-Exarchou H. Biotin for diabetic peripheral neuropathy. Biomed Pharmacother. 1990;44(10):511-514.  (PubMed)

36.  Debourdeau PM, Djezzar S, Estival JL, Zammit CM, Richard RC, Castot AC. Life-threatening eosinophilic pleuropericardial effusion related to vitamins B5 and H. Ann Pharmacother. 2001;35(4):424-426.  (PubMed)

37.  Zempleni J, Mock DM. Human peripheral blood mononuclear cells: ; Inhibition of biotin transport by reversible competition with pantothenic acid is quantitatively minor. J Nutr Biochem. 1999;10(7):427-432.  (PubMed)

38.  Flodin N. Pharmacology of micronutrients. New York: Alan R. Liss, Inc.; 1988.

39.  Camporeale G, Zempleni J. Biotin. In: Bowman BA, Russell RM, eds. Present Knowledge in Nutrition. 9th ed. Volume 1. Washington, D.C.: ILSI Press; 2006:314-326.

Updated and Reviewed in August 2008

———- Retrieved 12/10/2010 – Article Source: ————-

:: The above has been posted here for archival and educational purposes only. PLEASE do me a favor and visit the author’s website, i.e. the ORIGINAL website where this diet was found, by following this link, and considering using their services and/or visiting their sponsors’ websites: ::

-::- Note: The below is posted here for archival and educational purposes -::-

——-::- From Medline Plus -::————

Quoted Article:

What is it?

Biotin is a vitamin that is found in small amounts in numerous foods.

Biotin is used for preventing and treating biotin deficiency associated with pregnancy, long-term tube feeding, malnutrition, and rapid weight loss. It is also used orally for hair loss, brittle nails, skin rash in infants (seborrheic dermatitis), diabetes, and mild depression.

How effective is it?

Natural Medicines Comprehensive Database rates effectiveness based on scientific evidence according to the following scale: Effective, Likely Effective, Possibly Effective, Possibly Ineffective, Likely Ineffective, Ineffective, and Insufficient Evidence to Rate.

The effectiveness ratings for BIOTIN are as follows:

Likely effective for…

  • Treating and preventing biotin deficiency. Symptoms of deficiency include thinning of the hair (often with loss of hair color), and red scaly rash around the eyes, nose, and mouth. Other symptoms include depression, listlessness, hallucinations, and tingling in the arms and legs. There is some evidence that cigarette smoking may cause mild biotin deficiency.

Possibly ineffective for…

  • Skin rash in infants (seborrheic dermatitis).

Insufficient evidence to rate effectiveness for…

  • Hair loss. There is some preliminary evidence that hair loss can be reduced when biotin is taken by mouth in combination with zinc while a cream containing the chemical compound clobetasol propionate (Olux, Temovate) is applied to the skin.
  • Diabetes. Biotin alone doesn’t seem to affect blood sugar levels in people with type 2 diabetes. However, there is some evidence that a combination of biotin and chromium (Diachrome, Nutrition 21) might lower blood sugar in people with diabetes, whose diabetes is poorly controlled by prescription medicines.
  • Diabetic nerve pain. There is some evidence that biotin can reduce nerve pain in people with diabetes.
  • Brittle fingernails and toenails. Biotin might increase the thickness of fingernails and toenails in people with brittle nails.
  • Other conditions.

More evidence is needed to rate biotin for these uses.

How does it work?

Biotin is an important component of enzymes in the body that break down certain substances like fats, carbohydrates, and others.

There isn’t a good laboratory test for detecting biotin deficiency, so this condition is usually identified by its symptoms, which include thinning of the hair (frequently with loss of hair color) and red scaly rash around the eyes, nose, and mouth. Nervous system symptoms include depression, exhaustion, hallucinations, and tingling of the arms and legs. There is some evidence that diabetes could result in biotin deficiency.

Are there safety concerns?

Biotin is LIKELY SAFE for most people when taken appropriately and by mouth. Biotin is well tolerated when used at recommended dosages.

Special precautions & warnings:

Pregnancy and breast-feeding: Biotin is POSSIBLY SAFE when used in recommended amounts during pregnancy and breast-feeding.

Kidney dialysis: People receiving kidney dialysis may need extra biotin. Check with your health care provider.

Are there interactions with medications?

It is not known if this product interacts with any medicines.

Before taking this product, talk with your health professional if you take any medications.

Are there interactions with herbs and supplements?

There are no known interactions with herbs and supplements.

Are there interactions with foods?

Egg whites
Raw egg white contains a substance that binds biotin in the intestine and keeps it from being absorbed. Eating 2 or more uncooked egg whites daily for several months has caused biotin deficiency that is serious enough to produce symptoms.

What dose is used?

The appropriate dose of biotin depends on several factors such as the user’s age, health, and several other conditions. At this time there is not enough scientific information to determine an appropriate range of doses for biotin. Keep in mind that natural products are not always necessarily safe and dosages can be important. Be sure to follow relevant directions on product labels and consult your pharmacist or physician or other healthcare professional before using.

There is no recommended dietary allowance (RDA) established for biotin. The adequate intakes (AI) for biotin are 7 mcg for infants 0-12 months, 8 mcg for children 1-3 years, 12 mcg for children 4-8 years, 20 mcg for children 9-13 years, 25 mcg for adolescents 14-18 years, 30 mcg for adults over 18 years and pregnant women, and 35 mcg for breast-feeding women.

Other names

Biotina, Coenzyme R, D-Biotin, Vitamin B7, Vitamin H, W Factor, Cis-hexahydro-2-oxo-1H-thieno[3,4-d]-imidazole-4-valeric Acid.

  1. Henry JG, Sobki S, Afafat N. Interference by biotin therapy on measurement of TSH and FT4 by enzyme immunoassay on Boehringer Mannheim ES 700 analyzer. Ann Clin Biochem 1996;33:162-3.
  2. Hochman LG, Scher RK, Meyerson MS. Brittle nails: response to daily biotin supplementation. Cutis 1993;51:303-5.
  3. Said HM, Redha R, Nylander W. Biotin transport in the human intestine: inhibition by anticonvulsant drugs. Am J Clin Nutr 1989;49:127-31.
  4. Bonjour JP. Biotin in human nutrition. Ann N Y Acad Sci 1985;447:97-104.
  5. Krause KH, Bonjour JP, Berlit P, Kochen W. Biotin status of epileptics. Ann N Y Acad Sci 1985;447:297-313.
  1. Mock DM, Mock NI, Nelson RP, Lombard KA. Disturbances in biotin metabolism in children undergoing long-term anticonvulsant therapy. J Pediatr Gastroentereol Nutr 1998;26:245-50.
  2. Lininger SW. The Natural Pharmacy. 1st ed. Rocklin, CA: Prima Publishing; 1998.
  3. Brewster MA, Schedewie H. Trimethylaminuria. Ann Clin Lab Sci 1983;13:20-4.
  4. Shils ME, Olson JA, Shike M, Ross AC, eds. Modern Nutrition in Health and Disease. 9th ed. Baltimore, MD: Williams & Wilkins, 1999.
  5. Debourdeau PM, Djezzar S, Estival JL, et al. Life-threatening eosinophilic pleuropericardial effusion related to vitamins B5 and H. Ann Pharmacother 2001;35:424-6.
  6. Hill MJ. Intestinal flora and endogenous vitamin synthesis. Eur J Cancer Prev 1997;6:S43-5.
  7. Food and Nutrition Board, Institute of Medicine. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline (2000). Washington, DC: National Academy Press, 2000. Available at:
  8. Camacho FM, Garcia-Hernandez MJ. Zinc aspartate, biotin, and clobetasol propionate in the treatment of alopecia areata in childhood. Pediatr Dermatol 1999;16:336-8.
  9. Mock DM, Quirk JG, Mock NI. Marginal biotin deficiency during normal pregnancy. Am J Clin Nutr 2002;75:295-9.
  10. Zempleni J, Helm RM, Mock DM. In vivo biotin supplementation at a pharmacologic dose decreases proliferation rates of human peripheral blood mononuclear cells and cytokine release. J Nutr 2001;131:1479-84.
  11. Coggeshall JC, Heggers JP, Robson MC, et al. Biotin status and plasma glucose in diabetics. Ann N Y Acad Sci 1985;447:389-92.
  12. Koutsikos D, Agroyannis B, Tzanatos-Exarchou H. Biotin for diabetic peripheral neuropathy. Biomed Pharmacother 1990;44:511-4.
  13. Keipert JA. Oral use of biotin in seborrhoeic dermatitis of infancy: a controlled trial. Med J Aust 1976;1:584-5.
  14. Said HM. Biotin: the forgotten vitamin. Am J Clin Nutr. 2002;75:179-80.
  15. Zempleni J, Mock DM. Bioavailability of biotin given orally to humans in pharmacologic doses. Am J Clin Nutr 1999;69:504-8.
  16. Baez-Saldana A, Zendejas-Ruiz I, Revilla-Monsalve C, et al. Effects of biotin on pyruvate carboxylase, acetyl-CoA carboxylase, propionyl-CoA carboxylase, and markers for glucose and lipid homeostasis in type 2 diabetic patients and nondiabetic subjects. Am J Clin Nutr 2004;79:238-43.
  17. Mock NI, Malik MI, Stumbo PJ, et al. Increased urinary excretion of 3-hydroxyisovaleric acid and decreased urinary excretion of biotin are sensitive early indicators of decreased status in experimental biotin deficiency. Am J Clin Nutr 1997;65:951-8.
  18. Sealey WM, Teague AM, Stratton SL, Mock DM. Smoking accelerates biotin catabolism in women. Am J Clin Nutr 2004;80:932-5.
  19. Krause KH, Kochen W, Berlit P, Bonjour JP. Excretion of organic acids associated with biotin deficiency in chronic anticonvulsant therapy. Int J Vitam Nutr Res 1984;54:217-22.
  20. Krause KH, Berlit P, Bonjour JP. Vitamin status in patients on chronic anticonvulsant therapy. Int J Vitam Nutr Res 1982;52:375-85.
  21. Mock DM, Dyken ME. Biotin deficiency results from long-term therapy with anticonvulsants (abstract). Gastroenterology 1995;108:A740.
  22. Geohas J, Finch M, Juturu V, et al. Improvement in Fasting Blood Glucose with the Combination of Chromium Picolinate and Biotin in Type 2 Diabetes Mellitus. American Diabetes Association 64th Annual Meeting, June 2004, Orlando, Florida, abstract 191-OR.
  23. Albarracin C, Fuqua B, Evans JL, Goldfine ID. Chromium picolinate and biotin combination improves glucose metabolism in treated, uncontrolled overweight to obese patients with type 2 diabetes. Diabetes Metab Res Rev 2008;24:41-51.
  24. Mock DM, Dyken ME. Biotin catabolism is accelerated in adults receiving long-term therapy with anticonvulsants. Neurology 1997;49:1444-7.
  25. Rathman SC, Eisenschenk S, McMahon RJ. The abundance and function of biotin-dependent enzymes are reduced in rats chronically administered carbamazepine. J Nutr 2002;132:3405-10.
  26. Singer GM, Geohas J. The effect of chromium picolinate and biotin supplementation on glycemic control in poorly controlled patients with type 2 diabetes mellitus: a placebo-controlled, double-blinded, randomized trial. Diabetes Technol Ther 2006;8:636-43.
  27. Ebek, Inc. issues voluntary nationwide recall of Liviro3, a product marketed as a dietary supplement. Ebek Press Release, January 19, 2007. Available at:

Last reviewed – 11/18/2010

———– Retrieved 12/09/2010 — Article Source: ———-

:: The above has been posted here for archival and educational purposes only. PLEASE do me a favor and visit the author’s website, i.e. the ORIGINAL website where this diet was found, by following this link, and considering using their services and/or visiting their sponsors’ websites: ::


——- Additional Sources Used in Articles on Biotin ——

Updated/Reviewed: 12/11/2010

An automatic insert of a related ad:

Thanks for your patronage.

If you enjoyed this article you may enjoy these as well

Tags: , , , ,

One Response to “Biotin Info – Archived Resources”

  1. Biotin Supplementation | World Hair Research Says:

    [...] LevelsYour Guide & Intro.Good Eating and Supplementing HabitsVery Useful LinksArticles « Biotin Info – Archived Resources Biotin Intro [...]

Leave a Reply

eight − = 6

Disclaimer: I must say this: The information presented herein is for informational purposes only. Consult your doctor, practitioner, and/or pharmacist for any health problem and before using any supplements, making dietary changes, or before making any changes in prescribed medications.
All posts are strictly opinions meant to foster debate, education, comment, teaching, scholarship and research under the "fair use doctrine" in Section 107 of U.S. Code Title 17. No statement of fact is made and/or should be implied. Please verify all the articles on this site for yourself. The Information found here should in no way to be construed as medical advice. If You have a health issue please consult your professional medical provider. Everything here is the authors own personal opinion as reported by authors based on their personal perception and interpretation as a part of authors freedom of speech. Nothing reported here should be taken as medical advice, diagnosis or prescription; medical advice should only be taken from your health care provider. Consume the information found on this web site under your own responsibility. Please, do your own research; reach your own conclusions, and take personal responsibility and personal control of your health.